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Cancer is a highly heterogeneous disease, exhibiting spatial and
temporal variations that pose challenges for designing robust
therapies. Here, we propose the VEPART (Virtual Expansion of
Populations for Analyzing Robustness of Therapies) technique as
a platform that integrates experimental data, mathematical mod-
eling, and statistical analyses for identifying robust optimal treat-
ment protocols. VEPART begins with time course experimental
data for a sample population, and a mathematical model fit to
aggregate data from that sample population. Using nonparamet-
ric statistics, the sample population is amplified and used to cre-
ate a large number of virtual populations. At the final step of
VEPART, robustness is assessed by identifying and analyzing the
optimal therapy (perhaps restricted to a set of clinically realizable
protocols) across each virtual population. As proof of concept, we
have applied the VEPART method to study the robustness of treat-
ment response in a mouse model of melanoma subject to treat-
ment with immunostimulatory oncolytic viruses and dendritic cell
vaccines. Our analysis (i) showed that every scheduling variant of
the experimentally used treatment protocol is fragile (nonrobust)
and (ii) discovered an alternative region of dosing space (lower
oncolytic virus dose, higher dendritic cell dose) for which a robust
optimal protocol exists.

robust therapies | cancer treatment | mathematical modeling |
virotherapy | immunotherapy

Heterogeneity is a defining feature of cancer (1, 2). Inter-
patient heterogeneity manifests clinically in variable dis-

ease progression and treatment response between patients with
the same diagnosis, whereas intrapatient heterogeneity describes
variations that exist between tumor cells in a single patient.
Intrapatient heterogeneity can be broken down further into
intratumor heterogeneity, intrametastatic heterogeneity, inter-
metastatic heterogeneity, and temporal heterogeneity (2, 3).
Intratumor heterogeneity is evident through the presence of mul-
tiple genetic subclones within a primary tumor (2), which have
even been shown to exist in spatially distinct regions of the pri-
mary tumor (4). Intrametastatic heterogeneity is similar to intra-
tumor heterogeneity, but describes heterogeneity within a sin-
gle metastatic lesion instead of within the primary tumor (2).
Intermetastatic heterogeneity, on the other hand, describes vari-
ations in subclones between different metastases in the same
patient (2). Finally, temporal heterogeneity is defined as changes
that take place in the tumor over time, whether they are a
result of genomic instability, natural selection, non-Darwinian
evolution, or selective pressures imposed by treatment (4–6).
Note that, in each case, heterogeneity need not be genetic
but may also be epigenetic, phenotypic, or microenvironmental
(2, 7, 8).

For decades, cancer patients have been treated using standard
of care, meaning they receive the best known treatment that has
been deemed as efficacious and safe in epidemiological studies
(9). However, in the face of such interpatient and intrapatient
heterogeneity, standard of care fails to induce a strong antitumor
response in some patients, and often loses its efficacy with time
(7, 9). The notion of personalized medicine has emerged as an

alternative to standard therapy, and holds the promise of improv-
ing clinical care by using patient-specific data to tailor treatment
protocols (5, 7, 9–11). The potential benefits of this approach
are multifaceted, and include the expectation of a strong patient
response with a minimal toxicity profile (5, 9, 10).

As heterogeneity presents challenges for standard of care ther-
apy, it also poses challenges for personalized therapy. If a thera-
peutic protocol is individually tailored based on measurements
from one region of a patient’s tumor at a particular pretreat-
ment time point, it is nontrivial to determine how regions of the
primary tumor distinct from the biopsy region, not to mention
metastatic legions, will respond to that protocol. Given that both
standard of care and personalized cancer treatment protocols
must confront the challenge of high levels of variability between
and within patients, the design of robust therapeutic protocols
is of the utmost importance. A robust treatment should result
in the same qualitative response despite a reasonable level of
uncertainty (12). In other words, it would be expected to exhibit
an antitumor response across a large fraction of patients, and
would be more likely to be effective across the range of spatial
and temporal variations observed within an individual patient. In
this work, we propose to study treatment robustness through a
technique that we call Virtual Expansion of Populations for Ana-
lyzing Robustness of Therapies (VEPART, for short). VEPART
provides a platform for assessing the robustness of treatment
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protocols by coupling experimental data with statistical tech-
niques and mathematical modeling.

As a methodology, VEPART is distinct from important eff-
orts to analyze dynamical system robustness to perturbations,
whether they be perturbations in parameter values, initial con-
ditions, or the functional forms used in the mathematical model
(12). Of these forms of robustness for dynamical systems, the
parameter robustness problem is the most well studied; see,
for instance, refs. 12–16. Parameter robustness in a mathemati-
cal model has important consequences, as it lends support that
conclusions drawn from the model can be trusted in a real-
world setting where noise is inevitable. Although not as well
understood, others have considered the questions of robustness
to change in initial conditions (17, 18), and to change in the
dynamical functions (19–21). These considerations are also of
paramount importance when assessing the reliability of model
predictions.

Comparatively, VEPART is a data-driven approach for study-
ing robustness to an external control, such as a treatment pro-
tocol. The starting ingredients for the VEPART method are
time course data for multiple individuals in a sample popula-
tion, together with a parametric mathematical model that has
been validated by fitting to aggregate data from this population.
VEPART proceeds by amplifying the sample population using
nonparametric statistical techniques, eventually resulting in the
generation of a large number of “virtual populations.” These
virtual populations, each defined by a parameterization of the
mathematical model, can be thought of as statistically plausible
subsets of the full patient population.

Virtual populations have been used by others, particularly in
the field of quantitative systems pharmacology (16, 22–30). Over-
whelmingly (see, for instance, refs. 16, 23, 27, and 28), these vir-
tual populations have been used to tackle the previously men-
tioned challenge of uncertainty in model parameters. From this
perspective, patients in a virtual population can be used to under-
stand how differences in disease manifestation occur, and to
propose mechanisms for variable drug response. As an exam-

Fig. 1. Schematic of VEPART method for analyzing the robustness of optimal therapeutic protocols.

ple, virtual populations have been used to demonstrate the clin-
ical importance of accounting for the correlated expression of
different metabolic enzymes (26), and to provide mechanistic
explanations for variations in response to a drug for rheumatoid
arthritis (27).

In some cases, virtual populations have been exploited to make
therapeutic design recommendations. For instance, Wang et al.
(24) describe the use of virtual populations to select a dose for a
phase 2b clinical trial, and Valitalo et al. (30) used virtual popu-
lations to propose a revised dosing guideline for the use of two
antibiotics in neonates. Another particularly relevant example is
the work of Kansal and Trimmer (22), which discusses how vir-
tual populations (designed through weighting of virtual patients)
can be used to optimize a target outcome across virtual popula-
tions. No details on how to practically achieve such a goal are
given in ref. 22, although a case study is mentioned for using vir-
tual populations to select clinical trial endpoints and to optimize
clinical trial design.

These virtual population methods require dozens to thousands
of samples to create virtual populations that are representative
of the target population (23, 26, 28–30). On the other hand,
the VEPART procedure proposed herein works with very small
amounts of data, and “expands” the available data in an effort
to model the heterogeneity expected in the full population. Not
only can VEPART create virtual populations despite limited
amounts of data, it can also handle the situation in which the data
come from different patients and experimental trials. This abil-
ity is in contrast to many existing virtual population approaches
in which all variables measured come from the same set of
individuals.

In this paper, we describe how VEPART also goes beyond
the standard use of virtual populations for studying paramet-
ric uncertainty, and instead utilizes these virtual populations to
assist in designing therapeutic protocols. In particular, we will
systematically detail how the VEPART procedure (summarized
in Fig. 1) moves from a small amount of data to a virtual pop-
ulation pool to a therapeutic robustness analysis. This process
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requires the identification of the optimal protocol (possibly
among a list of clinically viable options) for each of the virtual
populations, followed by an analysis of responses to the optimal
protocol(s) across the virtual populations.

Case Study: Immunoenhanced Oncolytic Viruses with
Dendritic Cell Vaccines
As a case study, we have applied this methodology to the experi-
mental data of Huang et al. (31) on a mouse model of melanoma
treated with oncolytic viruses (OVs) and dendritic cell (DC) vac-
cines. OVs are standard viruses genetically engineered to selec-
tively replicate in cancer cells. Upon integration into a tumor cell,
OVs replicate and, as part of their normal life cycle, lyse the cell
(32). Lysis results in the release of more OVs that can infect addi-
tional tumor cells, spreading an infection throughout the tumor
that, in theory, results in tumor regression while sparing normal
cells. These OVs can be further genetically enhanced to act as
a vector for delivering therapeutic genes to the tumor site (32).
In ref. 31, an oncolytic virus, the adenovirus (Ad) in particular, is
engineered to deliver genes that boost the immune system’s ability
to identify, target, and kill cancer cells. The transgenes of interest
in this study are 4-1BB ligand (4-1BBL) and interleukin (IL)-12;
4-1BBL is a costimulatory molecule expressed on antigen present-
ing cells. Binding of 4-1BBL to its receptor, 4-1BB, promotes the
development and expansion of type-1 T helper cells and cytolytic
effector T cells (31). IL-12 is a cytokine that strongly promotes the
differentiation of näıve CD4+ T cells to type-1 T helper cells (33).

Huang et al. (31) have demonstrated that oncolytic aden-
oviruses can successfully infect cancer cells, locally deliver ther-
apeutic genes, and cause tumor regression in their mouse model
(Fig. 2A). Further, the therapy has been shown to have mini-
mal side effects, as lysis and high expression of therapeutic genes
were restricted to cancer cells (31). The efficacy of this treat-
ment protocol has been shown to be enhanced by the use of DC
vaccines (Fig. 2B). DCs are antigen-presenting cells that stimu-
late näıve T cells and generate memory T cells (31). Huang et al.
(31) harvested these DCs from the bone marrow of mice, pulsed
them ex vivo with tumor-associated antigens, and delivered them
intratumorally to melanoma-bearing mice. This treatment exhib-
ited antitumor activity in isolation, and potent antitumor effects
in combination with oncolytic adenoviruses carrying 4-1BBL
and IL-12 (31), which we will refer to as Ad/4-1BBL/IL-12 for
brevity (Fig. 2B).

Fig. 2. Experimental data from Huang et al. (31) in which mice with B16-F10 subcutaneous tumors are intratumorally injected with different treatments.
Data points represent mean tumor volume ± SE in each group of six to nine mice. All injections occur on days 0, 2, and 4, unless otherwise specified. (A)
Treatments include injection of PBS (control), injection of 1010 OVs, injection of 1010 OVs carrying the 4-1BBL transgene, injection of 5× 109 OVs carrying
the IL-12 transgene, and injection of 5× 109 OVs carrying both the 4-1BBL and IL-12 transgene. (B) Treatments include injection of PBS, injection of 106 DCs
on days 1, 3, and 5, injection of 2.5× 109 Ad/4-1BBL/IL-12, and injection of 2.5× 109 Ad/4-1BBL/IL-12 on days 0, 2, and 4 along with 106 DCs on days 1, 3,
and 5. Also shown are the best-fit solution curves from the model presented in Eqs. 1–6 using the fitting procedure detailed in this work.

We have previously developed a mathematical model that
describes well the data from Huang et al. (31) in all experi-
mentally explored situations (Fig. 2): treatment with only OVs,
OVs enhanced with one or more immunostimulatory molecules
(4-1BBL, IL-12, or both), DC vaccines, and DC vaccines coupled
with Ad/4-1BBL/IL-12 (34, 35). In this prior work, we used the
best-fit parameters to address the question of the optimal treat-
ment ordering when administering three doses of Ad/4-1BBL/IL-
12 with three doses of the DC vaccine. We predicted that exactly
one strategy, front loading the cytokine-bearing OVs (OV–OV–
OV–DC–DC–DC), resulted in tumor eradication (35). However,
upon further exploration, we found that the model displayed some
unintuitive responses to altering the dosing order. For instance,
the ordering of the protocols from maximal to minimal tumor
response displayed no discernible pattern (35). A striking exam-
ple of this phenomenon was when the optimal protocol became
the worst-case scenario by simply moving the DC dose on the
last day of treatment to day one (DC–OV–OV–OV–DC–DC).
This extreme sensitivity to dosing order could be explained by our
finding that the doses of Ad/4-1BBL/IL-12 and DCs used in the
experiments of Huang et al. (31) were near a bifurcation point in
our mathematical model. As a result, slightly altering the dose or
sequence drastically changed the efficacy of the protocol (35).

Herein, we aim to gain insight into the unintuitive behav-
ior observed in our single-population optimization study by per-
forming a robustness analysis using VEPART. Specifically, we
generated a large number of bootstrap replicates by sampling
with replacement the experimental data in Huang et al. (31). As
detailed in Computational Methods, pseudorandom sampling of
the posterior distributions for the fit parameters approximated
from these bootstrap replicates was used to generate 1,000 vir-
tual populations. The procedure for finding the optimal dosing
sequence (among a subset of protocols) was repeated for each
virtual population. This process allows us to determine the prob-
ability that different protocols will successfully result in tumor
eradication, and further allows us to compute the likelihood that
a particular sequencing of drugs will be optimal across the vir-
tual populations. We undertook this analysis in three different
regions of dosing space: (i) at the experimentally used dose (31),
(ii) at a 50% higher dose of Ad/4-1BBL/IL-12 but a 50% lower
dose of DC than used in ref. 31, and (iii) at a 50% lower dose
of Ad/4-1BBL/IL-12 but a 50% higher dose of DC than used in
ref. 31.

Barish et al. PNAS | Published online July 17, 2017 | E6279
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This robustness analysis uncovered something unexpected:
Every scheduling variant of the experimentally used treat-
ment protocol that involves administering three doses of Ad/4-
1BBL/IL-12 and DCs is fragile (nonrobust). To detail, the pro-
tocol determined to be optimal at the experimentally used dose
(OV–OV–OV–DC–DC–DC) only results in tumor eradication in
30% of the virtual populations. All suboptimal protocols are even
less effective. The regime of higher OV and lower DC dose also
proved to be fragile, as the optimal protocol leads to tumor erad-
ication in only 43% of the virtual populations. On the contrary,
a robust optimal protocol exists when treating with higher doses
of DCs and lower doses of OVs than those used by Huang et al.
(31). In this dosing regime, the protocol of front loading the DCs
(DC–DC–DC–OV–OV–OV) not only proved to be optimal in all
virtual populations but also resulted in tumor eradication in more
than 84% of those virtual populations. This application serves as
proof of concept that computational robustness studies, under-
pinned by experimental data, can aid in identifying treatment pro-
tocols predicted to have strong antitumor properties despite inter-
patient (and intrapatient) heterogeneity.

Results
The full system of six differential equations described in Eqs. 1–
6 includes 14 parameters. Previously, we found that the value of
7 of the 14 parameter values (viral production rate, infected cell
lysis rate, viral decay rate, naive and cytotoxic T-cell decay rates,
base T-cell killing rate, and T-cell differentiation rate) could be
reasonably approximated from the literature (Table S1), whereas
the other 7 could not. Therefore, it is these 7 parameters that were
fit to give the best-fit solution curves to the experimental data, as
shown in Fig. 2.

The best-fit parameters for the full model (Ad/4-1BBL/IL-
12 + DCs), determined using the hierarchical scheme detailed in
Computational Methods, are found in Table S2 in SI Results. For
reference, Table S2 also compares the best-fit parameters found
herein to those previously found using a different algorithm and a
slightly different metric of fit (35). Finally, Table S2 includes the
95% credible interval for each fit parameter, as calculated from
the approximated posterior distributions (Fig. S1). These 95%
credible intervals are compared to the results of a local sensitivity
analysis, as shown in Figs. S2 and S3 of SI Results.

Fig. 3. VEPART output at intermediate OV and DC doses. The x axis indicates the treatment protocol, with “V” representing Ad/4-1BBL/IL-12 treatment
and “D” representing DC treatment on a given day. (A) For each of the 20 treatment protocols, we see the frequency at which it ranks in positions 1 to
20. Observe that there is little consistency across the virtual populations: On average, each of the treatment protocols can achieve over 17 different ranks.
(B) The frequency of virtual populations for which the specified treatment protocol leads to tumor eradication (blue) or tumor escape (yellow).

Robustness at Intermediate OV and DC Dose. Here we focus on
identifying and classifying the response and robustness to 20 treat-
ment protocols (all possible combinations of Ad/4-1BBL/IL-12
with DCs given at three doses a piece, separated by 1 d) at the
experimentally used dose of 2.5× 109 OVs per dose and 106 DCs
per dose (31); we will refer to this as the “intermediate OV/DC
dose” going forward. Our previous analysis revealed extreme sen-
sitivity to parameters at this dosage (35), so here we expand
upon that observation and undertake an exploration of treatment
robustness using the VEPART approach.

To this end, we generate 1,000 virtual populations by pseudo-
randomly sampling the posterior distributions on the fit parame-
ters (Fig. S1), as described in Computational Methods. These vir-
tual populations are alternative parameterizations to the model
in Eqs. 1–6 that, when pooled together, in theory capture the
underlying heterogeneity in the full patient population (16). The
20 treatment orderings considered in ref. 35 were administered
to each of these virtual populations, allowing us to determine a
“population-level” response to drug ordering at the intermediate
OV/DC dose (Fig. 3).

Fig. 3A demonstrates the extent to which the virtual popula-
tions respond differently to the same treatment protocol. For a
fixed ordering of the drugs (specified on the x axis), we see the
frequency with which each protocol ranks in positions 1 through
20, with 1 being the optimal treatment ordering and 20 being the
worst. Little consistency is observed in the ranking of the differ-
ent treatment protocols across virtual populations. For instance,
65% of the treatment protocols rank in both the top two and
bottom two positions in some of the virtual populations with
nonzero probability (Fig. 3A). That number grows to 90% if we
consider those that can rank in both the top and bottom five
positions (Fig. 3A).

Another indication of the nonrobust (fragile) response across
virtual populations at this dose is that, on average, each of the
20 treatment protocols achieve over 17 different rankings. As
an example, the previously found optimal protocol of OV–OV–
OV–DC–DC–DC achieves every rank between 1 and 20, with the
exception of rank 13 (Fig. 3A). This protocol is most likely to rank
in the top position, as it ranks in position 1 for 72.2% of the vir-
tual populations (Fig. 3A). However, the next most likely ranking
for this protocol is in the last position, as it ranks in position 20

E6280 | www.pnas.org/cgi/doi/10.1073/pnas.1703355114 Barish et al.
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for 13.8% of the virtual populations (Fig. 3A). The fact that the
same protocol is the best case for some virtual populations and yet
is the worst case for others strongly suggests the originally identi-
fied optimal protocol is not robust.

Because there was minimal support for a given treatment proto-
col to achieve a consistent ranking across the virtual populations,
we then sought to address a simpler question: Do certain protocols
result in tumor eradication in a large fraction of the virtual pop-
ulations, independent of where they appear on the rank-ordered
list of schedules? Consistent with the lack of a robust response
at this dose, we found no protocols that lead to eradication in a
majority of the virtual populations. Instead, we observed that the
treatment that ranked as the top protocol most frequently (OV–
OV–OV–DC–DC–DC) only results in tumor eradication in 30%
of the virtual populations (Fig. 3B). All other protocols have a
lower likelihood of tumor eradication, lending further evidence
to the claim that the tumor eradication response in this dosing
regime is fragile.

Digging more deeply into the binary classification of treatment
protocols, we found that treatment response is more closely tied to
the virtual population under consideration than to the treatment
protocol itself (order in which the doses are given). By sorting our
data by virtual population (instead of treatment protocol, as done
in Fig. 3), we find that just over 76% of the virtual populations have
the same binary response (tumor eradication or tumor escape) to
all 20 treatment protocols tested. In particular, our simulations
reveal that tumor escape will occur independent of the treatment
protocol used in just over 66% of the virtual populations. Further,
tumor eradication will occur independent of the treatment proto-
col in 10% of the virtual populations. Because the majority of vir-
tual populations have a binary response (eradication or escape)
independent of the dosing order, we learn that the parameters
in the virtual population, and not the treatment order itself, are
really driving the predictions in the intermediate OV/DC region
of dosing space.

To conclude, in this region of dosing space treatment response
can vary significantly across virtual populations. None of the
treatment protocols, including the optimal one of front loading
the OVs, robustly result in tumor eradication across the virtual
populations. The situation only gets messier when we consider

Fig. 4. VEPART output at high OV/low DC doses. The x axis indicates the treatment protocol. (A) The frequency of virtual populations for which the
specified treatment protocol leads to tumor eradication (blue) or tumor escape (yellow). (B) For each of the 20 treatment protocols, we see the frequency at
which it ranks in positions 1 to 20. Observe that there is strong consistency across the virtual populations, with each protocol achieving a dominant ranking
and other rankings only near that dominant one.

the frequency with which each protocol achieves different rank-
ings (from top protocol to worst protocol). Finally, the obser-
vation that treatment response is driven by the parameters that
describe a virtual population, rather than the dosing order itself,
further suggests that optimality predictions at this dosage may
be of limited value. Because the population-level eradication
response is fragile, we conclude that the combination of giving
three doses of 2.5× 109 Ad/4-1BBL/IL-12 and three doses of 106
DCs is not the ideal drug dosage to administer in this experi-
mental system.

Robustness at Higher OV and Lower DC Dose. Because the inter-
mediate OV/DC dose was found to be fragile, we next sought to
analyze the robustness of the 20 protocols at a 50% higher OV
dose (3.75× 109 versus 2.5× 109 OVs per dose) and a 50% lower
DC dose (0.5× 106 versus106 DCs per dose). Like before, robust-
ness of a protocol is assessed by measuring treatment efficacy
across all virtual populations generated by pseudorandomly sam-
pling the approximated posterior distributions for the fit param-
eters, as detailed in Computational Methods.

Similar to what was observed in the intermediate OV/DC dose,
no treatment protocols result in a robust eradication response
across the virtual populations (Fig. 4A). Although the protocol
of front loading OVs consistently ranks as the top treatment
across all virtual populations (Fig. 4B), the likelihood of tumor
eradication using this protocol is only 43%. This outperforms
the same protocol (which was also optimal) in the intermedi-
ate OV/DC dosing regime by 13%, but it still leaves over half of
the virtual populations unsuccessfully treated. Further, all other
protocols have a lower likelihood of eradication (with OV–OV–
DC–OV–DC–DC being the only other one to cross the 33%
threshold), suggesting that the tumor eradication response in this
dosing regime is fragile.

That said, some responses in this dosing regime are robust,
just not when it comes to the desired outcome of tumor eradica-
tion. Sixty percent of the protocols result in tumor escape in more
than 90% of the virtual populations, and front loading the DCs
results in treatment failure in 100% of the virtual populations (Fig.
4A). Further, unlike in the intermediate OV/DC regime, there is
little variation in the rank each treatment protocol can achieve
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across the virtual populations (Fig. 4B). This robust ranking can be
explained by the fact that tumor response at this dosage is driven
by the protocol itself, and not by the particular parameters in a
virtual population. So, although several robust treatment proto-
cols have been identified in this dosing regime, it is the undesir-
able tumor escape response that is robust. Therefore, in the high
OV/low DC case, we predict that no treatment protocol will have
robust antitumor activity in the face of interpatitent and intrapa-
tient heterogeneity.

Robustness at Lower OV and Higher DC Dose. We next sought
to explore whether a robust tumor eradication response exists
for any of the 20 protocols when treating at a 50% lower OV
dose (1.25× 109 versus 2.5× 109 OVs per dose) and a 50%
higher DC dose (1.5× 106 versus 106 DCs per dose). As done
in the two other regions of dosing space, robustness of a proto-
col is assessed by measuring treatment efficacy across all virtual
populations.

We began by exploring whether any dosing protocols result in
the eradication of a large fraction of the virtual populations. We
find that 30% of the treatment protocols lead to tumor eradication
in at least half of the virtual populations (Fig. 5A). This finding
stands in stark contrast to both the intermediate OV/DC dose and
the low OV/high DC dose. In those cases, not one protocol could
result in tumor eradication in half of the virtual populations (Figs.
3B and 4A).

As our intention is to find protocols that result in a robust
eradication response across virtual populations, we next nar-
rowed our focus to protocols that cause tumor eradication in
70% or more of the virtual populations. Three protocols were
found that satisfy this criterion, and they share one common fea-
ture: The first two doses are always DCs, meaning the proto-
col is of the form DC–DC–X–X–X–X. Further, the earlier the
third DC dose was given in the treatment protocol, the bet-
ter the protocol performed across the virtual populations. Front
loading with DCs in the DC–DC–DC–OV–OV–OV protocol
led to tumor eradication in 84.2% of the virtual populations
(Fig. 5A). Moving the third DC dose to later in the schedule
decreases the likelihood of tumor eradication by the protocol:
A DC dose at day 4 results in 76.9% eradication, one at day 5

Fig. 5. VEPART output at low OV/high DC doses. The x axis indicates the treatment protocol. (A) The frequency of virtual populations for which the
specified treatment protocol leads to tumor eradication (blue) or tumor escape (yellow). (B) For each of the 20 treatment protocols, we see the frequency at
which it ranks in positions 1 to 20. Observe that there is strong consistency across the virtual populations, with each protocol achieving a dominant ranking
and other rankings only near that dominant one.

results in 70.2% eradication, and one at day 6 results in 61.9%
eradication.

Not only do we see a robust eradication response for protocols
of the form DC–DC–X–X–X–X in this dosing regime, we also
find that the ranking of the protocols across the virtual popula-
tions is shockingly preserved (Fig. 5B). The most striking exam-
ple is that the schedule of front loading with DCs ranks as the
top protocol in all of the virtual populations. As can be calculated
from the data in Fig. 5B, each treatment protocol, on average, will
only rank in 4 of the 20 positions, and, overwhelmingly, the achiev-
able ranks are consecutive (e.g., DC–DC–OV–OV–DC–OV most
commonly ranks at position 3 but can also rank at positions 2 and
4). This finding is in stark contrast to the intermediate OV/DC
dosing regime, in which each protocol ranks in 17 of 20 positions,
on average. The lack of variation in the rank a treatment proto-
col can achieve across the virtual populations in the case of low
OV/high DC further supports our claim that treatment protocols
of the form DC–DC–X–X–X–X have a robust tumor eradication
response in this dosing regime.

Although of less interest, a pattern also emerges among those
protocols that administer Ad/4-1BBL/IL-12 on day 1. All of these
protocols result in a robust escape response, with escape occur-
ring in two thirds or more of the virtual populations (Fig. 5A).
We observe that protocols that give OVs on the first 2 d per-
form very poorly, resulting in tumor eradication in less than 14%
of the virtual populations (Fig. 5A). Further, with the excep-
tion of one protocol (OV–DC–DC–DC–OV–OV), all proto-
cols that administer an OV on day 1 have a lower probability
of tumor eradication than protocols that administer a DC on day 1.
To understand why this response occurs, note that, in this regime,
the dose of OV is 50% below the dose deemed to have a strong
tumor-killing effect with a reasonable toxicity profile in the experi-
mental system. Starting a treatment protocol with a relatively inef-
fective dose of OV increases the likelihood of tumor escape. On
the other hand, the optimal protocol administers high doses of
DCs early in treatment, and these high doses can compensate for
the relatively low dose of OV administered. Although protocols
that front-load OVs would be avoided due to limited antitumor
efficacy, this finding further illustrates the robust behavior of sev-
eral of the treatment protocols in this region of dosing space.
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Discussion
In this work, we introduced the VEPART platform for assessing
the robustness of treatment protocols. VEPART implementation
begins with an experimental dataset describing the temporal evo-
lution of some variable (for instance, tumor volume) in response
to treatment in a sample population. A mathematical model (for
instance, a system of differential equations) is then developed
and fit to the experimental data. Once a reasonable mathemat-
ical model is attained, nonparametric statistical techniques are
used to amplify the sample population and generate a large num-
ber of virtual populations. One benefit of this approach is that
a large sample size, which can be difficult to attain experimen-
tally, is not required to create these virtual populations. At this
point, treatment optimization can be performed for each virtual
population.

Although optimization is restricted to a set of clinically real-
izable protocols in this work, once the virtual populations have
been created, classical tools from optimal control theory could
also be applied (36, 37). An excellent overview of applying optimal
control theory to cancer chemotherapy planning can be found in
ref. 38. The use of optimal control in the context of the VEPART
method would allow a more general optimal protocol to be identi-
fied, where “optimal” could be defined in many ways; for instance,
one could seek to minimize tumor volume at an endpoint, mini-
mize tumor volume over a time horizon, minimize drug concen-
tration, minimize toxicity, minimize some weighted average the
above, etc. (37–45). Further, this optimization can be performed
subject to various types of constraints; for instance, toxicity could
be introduced as a constraint on the amount of drug that can be
administered (37, 46). These approaches can be used to find the
optimal schedule for a single therapeutic agent, or for a mixture
of drugs as done in refs. 43 and 47. Further, from any such opti-
mal control problem, one could perform a sensitivity or elasticity
analysis (similar to the one performed herein; see SI Results) to
quantify how parametric changes influence the quality of an opti-
mal treatment protocol, as in ref. 48.

A variety of solution methods exist for solving these optimal
control problems (38). Analytical expressions for the optimal con-
trol can be obtained for simple models (see, e.g., ref. 49), and,
when the model is too complex to obtain an analytic expres-
sion, approximation techniques can be used (see, for instance,
ref. 43). When the optimal solution is computationally intractable,
heuristic optimization algorithms, including genetic algorithm
and simulated annealing can be used, as done in refs. 42, 47,
and 50. Independent of how the optimization is carried out, an
analysis of the optimal protocols across virtual populations using
the VEPART method allows for the quantification of protocol
robustness.

Related Work: Robust Cancer Therapies. In the cancer literature,
examples of analogous efforts for designing robust treatment pro-
tocols can be found in radiotherapy (51–54). The challenges in
designing a robust radiation treatment protocol can largely be
attributed to geometric uncertainty and interpatient variability
(54). Several studies have addressed the challenges posed by geo-
metric uncertainty, including factors such as organ motion, vari-
ations in treatment setup, patient positioning errors, and fluc-
tuations in machine output (54). For instance, Liu et al. (52)
used “worst-case robust optimization” to identify intensity mod-
ulated proton therapy (IMPT) plans that are robust to uncer-
tainties in the beamlet range and equipment setup. For the same
beam arrangement, they computed a different dose distribution
accounting for these uncertainties and compared this to the opti-
mal dose distribution. They applied this approach to the lung,
skull base and prostate and found that compared with IMPT plans
optimized using conventional (nonrobust) methods, their method
resulted in radiotherapy plans that are less sensitive to beamlet
range and setup uncertainties (52). In a series of papers, robust
optimization was used for planning intensity modulated radia-
tion therapy for lung cancer in the face of uncertainty caused by
breathing (51, 55, 56). This work introduces a data-driven model

of uncertainty to describe variations in breathing motion and
allows the authors to determine the trade-off between ensuring
the tumor receives sufficient radiation and minimizing the dose
to normal tissue (51, 55, 56).

On the other hand, the work by Leder and colleagues (54)
was the first to consider the challenge that interpatient variability
poses to designing a robust radiotherapeutic protocol. They were
particularly concerned about the potential risk that the optimal
protocol (determined using the linear–quadratic model) may be
weakly efficacious for some individuals, or may cause high toxi-
city to at-risk organs for others. To address this robustness con-
cern, the authors used a stochastic optimization scheme in which
the unknown parameters are assumed to be random variables with
known distributions. The goal is to choose a dosing schedule (total
dose, number of fractions, dose per fraction, and treatment dura-
tion) for which the objective function attains a high level with a
given probability, and that the imposed constraints are also satis-
fied with a given probability. The authors found some important
differences in the optimal schedule that accounts for parameter
uncertainty compared with the optimal schedule found using the
nominal parameter values in the absence of uncertainty (54). Our
work is motivated by a similar robustness question to that consid-
ered by Leder and colleagues in ref. 54, although not restricted to
radiotherapy.

Case Study: Immunoenhanced OVs with DC Vaccines. As a proof
of concept, we applied VEPART to explore the robustness of
treatment protocols that combine three doses of immunostimula-
tory OVs with three DC injections; to accomplish this, we worked
with the experimental data from Huang et al. (31). The nature of
this dataset previously led us to use a hierarchical method for fit-
ting the parameter values (Computational Methods), which posed
a challenge for directly fitting parameters for each of the virtual
populations. To overcome this challenge, we began by bootstrap-
ping the experimental data and using the best-fit parameters in
each bootstrap replicate to approximate the posterior probability
distribution for the parameters in our mathematical model (Eqs.
1–6). Pseudorandom sampling of these distributions, as detailed
in Computational Methods, allowed for the creation of our 1,000
virtual populations.

In this case study, 20 treatment protocols (all possible combina-
tions of Ad/4-1BBL/IL-12 with DCs given at three doses a piece,
separated by 1 d) were ranked across the virtual populations in
three regions of dosing space: (i) intermediate and experimentally
used OV/DC dose, (ii) high OV/low DC, and (iii) high DC/low
OV. VEPART revealed that the first two dosing regimes we con-
sidered are fragile. To detail, the protocol of administering Ad/4-
1BBL/IL-12 on the first 3 d, and following up with a sequence of
DCs, was optimal for both the intermediate dose of OVs and DCs
and the high OV/low DC dose. However, in neither case did this
protocol cause a robust eradication response: The protocol only
causes tumor eradication in 30% of the virtual populations at the
intermediate dose, and in 43% of the virtual populations at the
high OV/low DC dose. As a consequence of VEPART’s nonro-
bust prediction, it is not expected that any ordering of three OVs
and three DCs at these two doses will exhibit a strong antitumor re-
sponse in the face of interpatient and intrapatient heterogeneity.

On the other hand, in the high DC/low OV region of dosing
space, a robust optimal protocol was identified. This protocol
administers DCs on the first 3 d, and follows up with a sequence of
Ad/4-1BBL/IL-12 on the last 3 d. Not only did this protocol rank
as optimal in all virtual populations, it also resulted in tumor erad-
ication in 84% of those virtual populations. Therefore, VEPART
predicts that, in the high DC/low OV region of dosing space, the
treatment that front-loads DCs will be effective across different
individuals in a population, and will be more robust to spatial and
temporal variations within an individual.

In future work, the use of approximate optimal control tech-
niques or heuristic optimization algorithms (38, 42) can extend the
current implementation of VEPART. In particular, we can opti-
mize over a wider range of protocols (for instance, considering
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a variable number of OV and DC doses, and/or allowing variable
spacing between doses), and over a more complete range of dos-
ing space. This extended analysis of our system could result in find-
ing robust protocols beyond treating with DC–DC–DC–OV–OV–
OV in the high DC/low OV region of dosing space.

This case study is intended to illustrate how the VEPART
method can be used to assess therapeutic robustness. By combin-
ing experimental data with mathematical modeling and statistical
analyses, the VEPART approach can contribute to tackling a sig-
nificant problem clinicians face when treating cancer using stan-
dard of care or an individualized treatment protocol: high levels
of interpatient and intrapatient variability.

Computational Methods
In this section, we introduce our mathematical model that
includes immunostimulated OVs and DC vaccines. Although this
model has been successfully fit to the experimental data of Yun
and colleagues (31, 35), we introduce an alternative approach
to fitting the data that results in small but significant improve-
ments in the model fits. To further study the relationship between
the model and its parameters, in this section, we also describe
two key steps of our proposed VEPART approach: (i) We detail
the bootstrapping procedure that produces posterior distributions
and credible intervals for each of the fit parameters, and (ii) we
explain how these posterior distributions are used to generate vir-
tual populations that provide the foundation of our robustness
analysis.

Mathematical Model. In this study, the data-validated model from
Wares et al. (35) was used. The model is represented by the fol-
lowing initial value problem:

dU

dt
= rU − β

UV

N
− (k0 + ckillI )

UT

N
U (0) = U0, [1]

dI

dt
= β

UV

N
− δI I − (k0 + ckillI )

IT

N
I (0) = 0, [2]

dV

dt
= uv (t) + αδI I − δVV V (0) = 0, [3]

dT

dt
= cT I + χAA+ χDD − δTT T (0) = 0, [4]

dA

dt
= cAI − δAA A(0) = 0, [5]

dD

dt
= uD(t)− δDD D(0) = 0, [6]

whereU is the number of uninfected tumor cells (the only variable
with a nonzero initial condition that gets fit at each step of the hier-
archical fitting process), I is the number of tumor cells infected by
the OV, V is the number of free virions (oncolytic adenoviruses),
T is the number of tumor-targeted T cells, A is the number of
näıve T cells, D is the number of injected DCs (note that endoge-
nous DCs are not directly modeled), and N is the total number
of cells (tumor cells and T cells) at the tumor site. The individual
terms that contribute to the rate of change of each population are
explained in more detail in SI Computational Methods.

This model was hierarchically developed to fit the increasingly
complex data in Fig. 2. Although more details are provided in SI
Computational Methods, here we briefly note the different hierar-
chical stages of the model:

i) Model 0 is a model of untreated tumor growth in the absence
of any virions, T cells, or DCs.

ii) Model 1 is a model of tumor growth and treatment with
oncolytic virotherapy that does not carry any immunostimu-
latory transgenes. T cells and DCs are still not considered.

iii) Model 2a is a model of tumor growth and treatment with the
immunostimulatory oncolytic virotherapeutic Ad/4-1BBL.
The immunostimulation results in the inclusion of tumor-

targeted T cells, but näıve T cells and DCs are still not
considered.

iv) Model 2b is a model of tumor growth and treatment with
the immunostimulatory oncolytic virotherapeutic Ad/IL-12.
The immunostimulation results in the inclusion of tumor-
targeted T cells, including the naive T cells, but DCs are still
not considered.

v) Model 3 is a model of tumor growth and treatment with the
immunostimulatory oncolytic virotherapeutic Ad/4-1BBL/IL-
12. The immunostimulation results in the inclusion of tumor-
targeted T cells, including the naive T cells, but DCs are still
not considered.

vi) Model 4 is a model of tumor growth and treatment with
Ad/4-1BBL/IL-12 and DC vaccines. At this point, the model
includes all equations and all terms within each equation,
including the tumor-targeted T cells, the naive T cells, and the
DCs. A subcase of model 4 in which all virus-related parame-
ters are set to zero gives us the case of treating with only the
DC vaccine.

Fitting Model to Experimental Data. Just as the structure of the
model was hierarchically developed, the parameter fitting scheme
was also hierarchical in nature (34, 35). As illustrated in Fig. S4,
parameters that could not be well-estimated from the literature
were fit at each hierarchical model stage, and some subset of the
fit parameters are inherited to the subsequent models in the hier-
archical scheme. Details of this hierarchical fitting scheme can be
found in SI Computational Methods. The initial condition for the
number of uninfected tumor cells was always refit at each model
stage, as each model was fit to a different data set. All other initial
conditions are identically zero, as the administration of treatment
is captured through the time-varying terms [uV (t) and uD(t)] in
Eqs. 1–6.

The parameters in models 1 through 4 were previously fit
using the Levenberg–Marquadt algorithm as implemented by
MATLAB’s lsqnonlin command (35). Like most parameter fit-
ting schemes, the Levenberg–Marquadt algorithm can get stuck at
local minimum, and the algorithm’s performance deteriorates as a
function of the dimension of parameter space. To have more con-
trol over parameter fitting, and to attempt to avoid getting trapped
at local minimum, here we instead use simulated annealing for
model fitting.

Goodness of model fit to the experimental data is sought by
minimizing the objective function S , as defined by

S =
∑
t

vt

(
vmodel
t − vt

)2
σ2
t

, [7]

wherevt is the average experimental tumor volume at day t ,vmodel
t

is the tumor volume at day t predicted by Eqs. 1–6, and σ2
t is the

variance in the experimental tumor volume at day t . Within Eq. 7,
the fractional term is a dimensionless measure of the error: The
numerator gives the sum of the square errors between the model
predictions and the (average) experimental data, and the denom-
inator is the variance in the experimental data. By dividing the
sum of the square errors by the variance, we impose the condition
that, at time points where the variance is small, we want a better fit
to the average volume than is required at time points where the
variance is large, in accordance with the principle of maximum
likelihood estimation (57).

Because volume measurements made using calipers are impre-
cise for smaller tumor sizes [instrumentation error in measuring
length and width is independent of tumor volume (58, 59)], the
dimensionless term in Eq. 7 is weighted by the average tumor
volume at day t . Our weighting has the additional advantage of
leading to a better-posed numerical optimization problem, as this
objective function does not artificially bias the algorithm to fit
well at small tumor sizes (when the variance is very small) at the
expense of fitting well over a majority of the data points. Details
on the simulated annealing algorithm being used to minimize Eq.
7 can be found in SI Computational Methods and Table S3 therein.
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Analyzing Best-Fit Parameters. For each dataset (control, Ad
only, etc.) consisting of N mice (N was between six and nine,
depending on the dataset), 1,000 bootstrap replicates have been
created. Each bootstrap replicate was created by samplingN mice
from the original dataset with replacement (36) using the pro-
graming language R. The simulated annealing protocol was run
on each bootstrap replicate, and the best-fit parameter values for
each bootstrap replicate were binned in a histogram. This pro-
cess provides a visualization of the estimated posterior marginal
distribution on each fit parameter. Given the distributions were
empirical and asymmetric, we defined the 95% credible interval
for that parameter (the interval for which we can be 95% confident
that the true value of the parameter occurs in) as the range that
excluded 2.5% of the values on each end of the distribution. Boot-
strapping has been used by others to explore parameter sensitivity
in mathematical biology models with implications for cancer; see,
for instance, refs. 60–62.

A local sensitivity analysis was also performed to give an alter-
native mechanism for analyzing the fit parameters. Details on this
are found in SI Computational Methods.

Ranking and Robustness of Treatment Protocols. Previous work
determined the optimal protocol among the 20 possible orderings
of three OV injections and three DC injections at the experimen-
tally used dose of 2.5× 109 OVs and 106 DCs (35). To rank these
6-d-long protocols, tumor growth was tracked over 1 mo, and the
volume predicted by the model after this period was recorded.
That analysis revealed that the only ordering of the drugs that led
to tumor eradication (defined as tumor volume dropping below
the assumed volume of one cell,10−6 mm3) was the one that front-
loads the OV (that is, OV–OV–OV–DC–DC–DC) (35). How-
ever, further analysis revealed that the dose used in the exper-
imental work was near a bifurcation point in the system, and
small changes in the drug dose could result in a different optimal
solution (35).

This finding motivated us to extend our analysis to investigate
treatment robustness, as such an analysis gives more information
about therapeutic efficacy than a single-population optimization
study. To explore robustness, the data obtained from the boot-
strap replicates were used to construct virtual populations, similar
to the nonparametric approach described in ref. 29. In particular,
herein, 1,000 virtual populations were created by pseudorandomly
picking the six fit parameters (r ,β, cA, cT , ckill , andχD ) from their
posterior distributions approximated using the bootstrap repli-
cates and the hierarchical fitting process. Two constraints were
imposed when creating these virtual populations. First, to main-
tain the covariance structure between the parameters, those that
were fit together were selected together to create a new virtual
population. This criterion impacted the selection of parameters
from model 3, and we implemented this parameter selection by
randomly choosing a value of cA from its approximated posterior
distribution, and subsequently setting the values for cT and ckill
to the best-fit value in the same bootstrap replicate that gave that
value of cA.

Note that an implicit assumption in creating virtual populations
in this way is that parameters fit at different stages of the hierar-
chical fitting process are minimally correlated. This assumption is
grounded in our fitting methodology, in which parameters fit at
each step of the hierarchy are treated as independent biological
phenomenon. For instance, the fitting of the tumor growth rate r
at the first step of the hierarchy isolates the behavior of the tumor

without treatment, and the fitting of the viral infectivity parameter
β at the next step of the hierarchy is meant to isolate the behav-
ior of the OV. In effect, this setup establishes a regime of tumor
growth and viral activity that the system responds to. Therefore,
by independently sampling from the distribution for r and β to
create a virtual population, we are trying to select a reasonable
tumor growth rate and a reasonable viral infectivity rate, as seen
in the experimental data. Others have given consideration to fur-
ther preserve the covariance structure among all variables; see,
for instance, refs. 16, 23, 25, 26, 29, and 30. The second constraint
imposed is that only virtual populations whose parameter values
are all within their respective 95% credible intervals were con-
sidered; this can be thought of as an “inclusion–exclusion” cri-
terion that refines the virtual population pool to be statistically
similar to the experimental population (29), including mirroring
its heterogeneity. That said, this approach does constrain the vir-
tual populations to statistically resemble the experimental data,
which, because of the small sample size in our experiments, runs
the risk of not resembling the population data (29). However, the
experimental data considered herein inject genetically identical
mice with the same number of cells from the same cancer cell line.
Therefore, at least for these data, it is reasonable that the small
sample can be expanded to result in virtual populations that accu-
rately reflect the true heterogeneity in the population.

Therapeutic robustness was assessed by ranking the 20 pro-
tocols of interest for each of the virtual populations that were
generated. Within a virtual population, a treatment was ranked
using a two-component criterion. First, for tumors that were erad-
icated within 30 d (volume drops below 10−6 mm3), the time
until eradication is used to measure the effectiveness of the pro-
tocol, with faster eradication times considered superior to slower
ones. Second, for tumors that were not eradicated within 30 d,
the volume after 30 d was used to measure the effectiveness of
the treatment, with smaller volumes considered superior to larger
ones. By analyzing the response to the 20 protocols across the
1,000 virtual populations, the robustness of each protocol can be
studied.

Given that our previous work suggested that the experimentally
used dose does not have a robust optimal solution, we performed
this robustness study in three different regions of dosing space: (i)
at the experimentally used dose (OV dose of 2.5× 109, DC dose
of 106), (ii) at a 50% higher dose of OV but a 50% lower dose of
DC (OV dose of 3.75× 109, DC dose of 0.5× 106), and (iii) at a
50% lower dose of OV but a 50% higher dose of DC (OV dose of
1.25× 109, DC dose of1.5× 106). These two other regions of dos-
ing space were chosen because they are sufficiently distinct from
the experimental dose such that we could expect different opti-
mal protocols and a different robustness profile. Further, both of
these regions of dosing space involve increasing the dose of one
drug and decreasing the dose of the other by the same relative
amount; this was done in an attempt to preserve the toxicity pro-
file across the three dosing regimes.
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48. Hofman A, Scherrer A, Küfer KH (2015) Analyzing the quality robustness of
chemotherapy plans with respect to model uncertainties. Math Biosci 215:55–61.

49. Murray J (1997) The optimal scheduling of two drugs with simple resistance for a
problem in cancer chemotherapy. Math Med Biol 14:283–303.

50. Gevertz J (2012) Optimization of vascular-targeting drugs in a computational model
of tumor growth. Phys Rev E 85:041914.

51. Chang T, Mišić V (2013) Adaptive and robust radiation therapy optimization for lung
cancer. Eur J Oper Res 231:745–756.

52. Liu W, Zhang X, Li Y, Mohan R (2012) Robust optimization of intensity modulated
proton therapy. Med Phys 39:1079–1091.

53. Betts J, et al. (2015) Optimised robust treatment plans for prostate cancer focal
brachytherapy. Procedia Comput Sci 51:914–923.

54. Badri H, Watanabe Y, Leder K (2016) Optimal radiotherapy dose schedules under
parametric uncertainty. Phys Med Biol 61:338–364.

55. Chan T, Bortfeld T, Tsitsiklis J (2006) A robust approach to IMRT optimization. Phys
Med Biol 51:2567–2583.

56. Bortfeld T, Chan T, Trofimov A, Tsitsiklis J (2008) Robust management of motion uncer-
tainty in intensity-modulated radiation therapy. Oper Res 56:1461–1473.

57. Pan J, Fang K (2002) Maximum Likelihood Estimation (Springer, New York), pp 77–
158.

58. Feldman J, Goldwasser R, Mark S, Schwartz J, Orion I (2009) A mathematical model
for tumor volume evaluation using two-dimensions. J Appl Quant Methods 4:
455–462.

59. Ayers G, et al. (2010) Volume of preclinicial xenograft tumors is more accurately
assessed by ultrasound imaging than manual caliper measurements. J Ultrasound
Med 29:891–901.

60. Kirk P, Stumpf P (2009) Gaussian process regression bootstrapping: Exploring the
effects of uncertainty in time course data. Bioinformatics 25:1300–1306.

61. Lodhi H, Gilbert D (2011) Bootstrapping Parameter Estimation in Dynamic Systems,
eds Elomaa T, Hollmén J, Mannila H (Springer, Berlin), pp 194–208.

62. Wang Z, Bordas V, Deisboeck T (2011) Identification of critical molecular components
in a multiscale cancer model based on the integration of Monte Carlo, resampling,
and ANOVA. Front Physiol 2:35.

63. Efron B (1979) Bootstrap methods: Another look at the jackkife. Ann Stat 7:1–26.
64. Arsenio J, Metz P, Chang T (2015) Asymmetric cell division in T lymphocyte fate diver-

sification. Trends Immunol 36:670–683.
65. Gerritsen B, Pandit A (2016) The memory of killer T cell: Models of CD8+ T cell differ-

entiation. Immunol Cell Biol 94:236–241.
66. Chang J, et al. (2007) Asymmetric T lymphocyte division in the initiation of adaptive

immune responses. Science 315:1687–1691.
67. Metz P, et al. (2015) Regulation of asymmetric division and CD8+ T lymphocyte fate

specification by protein kinase Czeta and protein kinase C-lambda/iota. J Immunol
194:2249–2259.

68. Reynolds J, Coles M, Lythe G, Molina-Paris C (2013) Mathematical model of naive T
cell division and survival IL-7 thresholds. Front Immunol 4:434.

69. Chen Y, et al. (2001) CV706, a prostate cancer-specifiic adenovirus variant, in combi-
nation with radiotherapy produces synergistic antitumor efficacy without increasing
toxicity. Cancer Res 61:5453–5460.

70. Jogler C, et al. (2006) Replication properties of human adenovirus in vivo and cultures
of primary cells from different animal species. J Virol 80:3549–3558.

71. Li HL, et al. (2008) Pharmacokinetic and pharmacodynamic study of intratumoral
injection of an adenovirus encoding endostatin in patients with advanced tumors.
Gene Ther 15:247–256.

72. De Boer RJ, et al. (2001) Recruitment times, proliferation, and apoptosis rates during
the CD8(+) T-cell response to lymphocytic choriomegingitis virus. J Virol 75:10663–
10669.

73. de Pillis LG, Radunskaya AE, Wiseman CL (2005) A validated mathematical
model of cell-mediated immune response to tumor growth. Cancer Res 65:7950–
7958.

E6286 | www.pnas.org/cgi/doi/10.1073/pnas.1703355114 Barish et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
4,

 2
02

1 

http://www.pnas.org/cgi/doi/10.1073/pnas.1703355114

